Integrated Topside Design DSM Summary Brief

to 3rd ONR Ship Design Process Workshop

April 2009

What we did for 3rd Workshop

- Began with output from 2nd Workshop.
- Prior to 3rd Workshop, defined activities and dependencies in detail.
- Discussed observations and insights of and potential application of DSM.
- Experimented with changes to matrix and external dependencies.

ITD DSM

				ents	Pla	ents	ation	dels	mer	nen	₩	=M	afet	kag	ake	ect	ure	Hide	ure	ر د د	atio	anc	oilit	Risk 21	hol	亰
				ν,		()	,		=		~	()	y 1(<u>_</u>	s 1;	s 1:	s 1,	<u>.</u> 1.	s 16	± 1	12	H 10	2	N)	d 2;	2
	U	Evaluate Ship Requirements	1	<u>-</u> 4%	0	ω	4	01	O	7	ω	0	0		0	ω	4	01	0)	7	ω	0	0	_		٦
ľ	ב ס	Define ITD Management Plan	2		4%								Н							Н	Н	\dashv		+	+	1
i	Ď	Define System Components	3	1	1	4%			1				П							П	П	\neg		\dashv	\top	1
	efir	Collect Ship and System Information	4	1	1	1	4%						П							П	П			\dashv	\top	1
	Definition	Define Digital Product Models	5		1		1	4%					П							П	П	\neg		1	十	1
	Ď Ω	Evaluate Low-fidelity Topside Arrangement	6		1		1		4%	1														\exists	\neg	1
		Define Topside Arrangement	7		1			1	1	4%														\exists	\neg	1
		Evaluate Topside HM&E	8	1	1					1	4%													\Box	\exists	1
		Evaluate Topside EMC	9	1	1					1		4%														
	Para	Evaluate Topside Safety	10	1	1					1		1	4%												\Box	
9	<u> </u>	Evaluate Topside Coverage/Blockage	11	1	1					1		1		4%												
	Щ 	Evaluate Topside Intakes & Uptakes	12	1	1					1					4%		1									
9	valuation	Evaluate Topside Stack Gas & Air Wake Effe	13	1	1					1					1	4%										
	<u>a</u>	Evaluate Topside Signatures	14	1	1					1		1			1	1	4%		1							
9	5	Evaluate Topside Survivability	15	1	1					1		1					1	4%								
(≘	Evaluate Topside Structures	16	1	1					1				1		1	1	1	4%						\perp	
	Pa	Evaluate Topside C4I	17	1	1					1		1		1		1			1	4%	$\overline{}$					
	Parallel	Evalute Topside Aviation	18	1	1					1		1				1					4%					
		Evaluate Topside Combat System Performar	19	1	1					1		1		1			1					4%			\perp	
	Ð	Evaluate Producibility	20	1	1					1					1				1			4	1%		\perp	
Į	D D	Evaluate ITD Risk	21	1	1					1	1	1	1	1	1	1	1	1	1	1	1	1	1	4%		
I	D D	Evaluate Analyses Against Design Threshold	22	1	1						1	1	1	1	1	1	1	1	1	1	1	1	1	1 4		
I	Ð	Topside IDR	23		1					1														1	1 4	%
<u>, L</u>																										

Conclusions

- The DSM Matrix represents the generic ITD process and provides a starting point for discussion.
- Three digit level process documentation is needed; a funded effort will produce results more rapidly.
- Individual naval engineers have unique experience due to process variability across different designs.
- Each activity requires WTA equivalent description (Scope, duration, mnhrs, material/contractor costs, deliverables, TWH)
- Iterative design process, overlapping activities, and levels of detail add to challenge of describing activities & dependencies.
- Estimates of elapsed time are difficult due to varied experience and assumptions.

Conclusions

- Hypothetical Design process case is difficult to document because there are too many variables and unknowns.
- Assumptions are critical to process representation.
 - First iteration of ITD within early PD
 - Traditional spiral design process (not set-based)
 - New Clean Sheet Design documented in LEAPS
 - Level of detail provided by prior design process
 - Cadence is undefined; 12 weeks?
- Reviewing ITD independently; need to investigate interactions with other design functions (Machinery, Hull, etc).
- Good process modeling will show where new tools (CREATE) could expedite process and need for system specific criteria development.

Conclusions

- The ITD Team is not quite ready to fully endorse DSM for project planning.
 - Further characterization needed to better understand value.
 - Implementation is not defined; how would DSM be rolled out?
 - Validation of process models needs to be discussed.
 - It took a room full of very experienced experts many hours to achieve a level of process definition viewed as incomplete.
 - New programs face same problem
 - How can engineers learn the process and be expected to execute with limited experience?